Ref[A] 是对 A 类型的可变引用值的建模。它有两个基本操作:set,向 Ref 中填入新值;get,从中获得当前的值。Ref 上所有的操作都是原子且线程安全的,这为同步并发程序提供了可靠的基础。 更新一个 Ref 使用 Ref 最简单的手段是使用 update 或它更强大的好兄弟 modify。通过这些我们可以轻易地写一个像这样的 repeat 组合器。 状态转换器 可变量的阴暗面在于它们能够轻易地被改变;它们可以像圣诞节装饰品一样添加在任何地方并改变状态。比如: 作为函数式程序员,我们相当了解如何对付它。我们可以 S =>(A, S) 类型的函数形式来捕获状态的改变。Ref 提供了这样的编码能力,S 用来表达值的类型,并通过 modify 引介状态改变函数。 构建更复杂的并发原语 Ref 的级别足够低,以至于可以用作其他并发数据类型的基础。 信号量是一种经典的用于控制对共享资源的访问的抽象数据类型。它的定义为一个三元组形式 S = (v, P, V),其中 v 是当前可用资源的单位数,P 和 V 分别是对 v 进行递减和递增的运算;P 只能在 v 是非负数的时候才能对它进行递减,否则必须等待直到非负为止。 现在,有了 Refs,我们可以很容易实现它!唯一的困难在于 P,我们必须在 v 为负数时,或在我们读取并试图改变它时,它恰好被(别的线程)改变了,这时让 P 失败并重试。 一个不成熟的实现看上去可以像下面这样: 现在让我们伴随前几天在市场上发现的这些鳄鱼皮靴子摇滚起来,在夜总会测试我们的信号灯吧,来吧! 同时不用说,您应该看一下 ZIO 内建的 Semaphore,它可以完成所有的这些甚至更多工作而不会浪费任何 CPU 周期。 多态的 Refs Ref[A] 实际上是类型 ZRef[Nothing, Nothing, A, A] 的别名。ZRef 的类型签名如下: ZRef 是对可变引用的多态的,纯函数的描述。它的基本操作包括 set 和 get。set 接受一个类型为 A 的值并将引用设置为该新值,这个操作可能以 EA 错误类型失败。get 获取并返回当前的 B 类型的引用值,或者它可能以 EB 错误类型失败。 当 ZRef 的错误和值类型统一时,即 ZRef[E, E, A, A]。ZRef 还支持如上所述的原子 modify 和 update 操作。 一个简单的用例是可以获得引用值的只读或只读视图: